module forth import Base.REPLCompletions, Base.invokelatest # VM mem size size_mem = 1000000 # 1 mega-int # Buffer sizes size_RS = 1000 # Return stack size size_PS = 1000 # Parameter stack size size_TIB = 1000 # Terminal input buffer size size_FIB = 1000 # File input buffer size # Memory arrays mem = Array{Int64,1}(size_mem) primitives = Array{Function,1}() primNames = Array{AbstractString,1}() # Memory geography and built-in variables nextVarAddr = 1 H = nextVarAddr; nextVarAddr += 1 # Next free memory address FORTH_LATEST = nextVarAddr; nextVarAddr += 1 # FORTH dict latest CURRENT = nextVarAddr; nextVarAddr += 1 # Current compilation dict RSP0 = nextVarAddr # bottom of RS PSP0 = RSP0 + size_RS # bottom of PS TIB = PSP0 + size_PS # address of terminal input buffer FIB = TIB + size_TIB # address of terminal input buffer mem[H] = FIB + size_FIB # location of bottom of dictionary mem[FORTH_LATEST] = 0 # zero FORTH dict latest (no previous def) mem[CURRENT] = FORTH_LATEST-1 # Compile words to system dict initially DICT = mem[H] # Save bottom of dictionary as constant # VM registers type Reg RSP::Int64 # Return stack pointer PSP::Int64 # Parameter/data stack pointer IP::Int64 # Instruction pointer W::Int64 # Working register end reg = Reg(RSP0, PSP0, 0, 0) # Stack manipulation functions function ensurePSDepth(depth::Int64) if reg.PSP - PSP0 < depth error("Parameter stack underflow.") end end function ensurePSCapacity(toAdd::Int64) if reg.PSP + toAdd >= PSP0 + size_PS error("Parameter stack overflow.") end end function ensureRSDepth(depth::Int64) if reg.RSP - RSP0 < depth error("Return stack underflow.") end end function ensureRSCapacity(toAdd::Int64) if reg.RSP + toAdd >= RSP0 + size_RS error("Return stack overflow.") end end function pushRS(val::Int64) ensureRSCapacity(1) mem[reg.RSP+=1] = val end function popRS() ensureRSDepth(1) val = mem[reg.RSP] reg.RSP -= 1 return val end function pushPS(val::Int64) ensurePSCapacity(1) mem[reg.PSP += 1] = val end function popPS() ensurePSDepth(1) val = mem[reg.PSP] reg.PSP -= 1 return val end # Handy functions for adding/retrieving strings to/from memory. getString(addr::Int64, len::Int64) = String([Char(c) for c in mem[addr:(addr+len-1)]]) function putString(str::AbstractString, addr::Int64) mem[addr:(addr+length(str)-1)] = [Int64(c) for c in str] end function putString(str::AbstractString, addr::Int64, maxLen::Int64) len = min(length(str), maxLen) mem[addr:(addr+len-1)] = [Int64(c) for c in str] end stringAsInts(str::AbstractString) = [Int(c) for c in collect(str)] # Primitive creation and calling functions function defPrim(f::Function; name="nameless") push!(primitives, f) push!(primNames, replace(name, "\004", "EOF")) return -length(primitives) end function callPrim(addr::Int64) if addr >=0 || -addr>length(primitives) error("Attempted to execute non-existent primitive at address $addr.") else invokelatest(primitives[-addr]) end end getPrimName(addr::Int64) = primNames[-addr] # Word creation functions F_LENMASK = 31 F_IMMED = 32 F_HIDDEN = 64 NFA_MARK = 128 function dictWrite(ints::Array{Int64,1}) mem[mem[H]:(mem[H]+length(ints)-1)] = ints mem[H] += length(ints) end dictWrite(int::Int64) = dictWrite([int]) dictWriteString(string::AbstractString) = dictWrite([Int64(c) for c in string]) function createHeader(name::AbstractString, flags::Int64) mem[mem[H]] = mem[mem[CURRENT]+1] mem[mem[CURRENT]+1] = mem[H] mem[H] += 1 dictWrite(length(name) | flags | NFA_MARK) dictWriteString(name) end function defPrimWord(name::AbstractString, f::Function; flags::Int64=0) createHeader(name, flags) codeWordAddr = mem[H] dictWrite(defPrim(f, name=name)) return codeWordAddr end function defWord(name::AbstractString, wordAddrs::Array{Int64,1}; flags::Int64=0) createHeader(name, flags) addr = mem[H] dictWrite(DOCOL) dictWrite(wordAddrs) return addr end # Variable creation functions function defExistingVar(name::AbstractString, varAddr::Int64; flags::Int64=0) defPrimWord(name, eval(:(() -> begin pushPS($(varAddr)) return NEXT end))) end function defNewVar(name::AbstractString, initial::Array{Int64,1}; flags::Int64=0) createHeader(name, flags) codeWordAddr = mem[H] varAddr = mem[H] + 1 dictWrite(DOVAR) dictWrite(initial) return varAddr, codeWordAddr end defNewVar(name::AbstractString, initial::Int64; flags::Int64=0) = defNewVar(name, [initial]; flags=flags) function defConst(name::AbstractString, val::Int64; flags::Int64=0) createHeader(name, flags) codeWordAddr = mem[H] dictWrite(DOCON) dictWrite(val) return codeWordAddr end # Threading Primitives (inner interpreter) NEXT = defPrim(() -> begin reg.W = mem[reg.IP] reg.IP += 1 return mem[reg.W] end, name="NEXT") DOCOL = defPrim(() -> begin pushRS(reg.IP) reg.IP = reg.W + 1 return NEXT end, name="DOCOL") DOVAR = defPrim(() -> begin pushPS(reg.W + 1) return NEXT end, name="DOVAR") DOCON = defPrim(() -> begin pushPS(mem[reg.W + 1]) return NEXT end, name="DOVAR") EXIT_CFA = defPrimWord("EXIT", () -> begin reg.IP = popRS() return NEXT end) # Dictionary entries for core built-in variables, constants H_CFA = defExistingVar("H", H) PSP0_CFA = defConst("PSP0", PSP0) RSP0_CFA = defConst("RSP0", RSP0) defConst("DOCOL", DOCOL) defConst("DOCON", DOCON) defConst("DOVAR", DOVAR) defConst("DICT", DICT) defConst("MEMSIZE", size_mem) F_IMMED_CFA = defConst("F_IMMED", F_IMMED) F_HIDDEN_CFA = defConst("F_HIDDEN", F_HIDDEN) F_LENMASK_CFA = defConst("F_LENMASK", F_LENMASK) NFA_MARK_CFA = defConst("NFA_MARK", NFA_MARK) # Basic forth primitives DROP_CFA = defPrimWord("DROP", () -> begin popPS() return NEXT end) SWAP_CFA = defPrimWord("SWAP", () -> begin a = popPS() b = popPS() pushPS(a) pushPS(b) return NEXT end) DUP_CFA = defPrimWord("DUP", () -> begin ensurePSDepth(1) pushPS(mem[reg.PSP]) return NEXT end) OVER_CFA = defPrimWord("OVER", () -> begin ensurePSDepth(2) pushPS(mem[reg.PSP-1]) return NEXT end) ROT_CFA = defPrimWord("ROT", () -> begin a = popPS() b = popPS() c = popPS() pushPS(b) pushPS(a) pushPS(c) return NEXT end) NROT_CFA = defPrimWord("-ROT", () -> begin a = popPS() b = popPS() c = popPS() pushPS(a) pushPS(c) pushPS(b) return NEXT end) TWODROP_CFA = defPrimWord("2DROP", () -> begin popPS() popPS() return NEXT end) TWODUP_CFA = defPrimWord("2DUP", () -> begin ensurePSDepth(2) a = mem[reg.PSP-1] b = mem[reg.PSP] pushPS(a) pushPS(b) return NEXT end) TWOSWAP_CFA = defPrimWord("2SWAP", () -> begin a = popPS() b = popPS() c = popPS() d = popPS() pushPS(b) pushPS(a) pushPS(d) pushPS(c) return NEXT end) TWOOVER_CFA = defPrimWord("2OVER", () -> begin ensurePSDepth(4) a = mem[reg.PSP-3] b = mem[reg.PSP-2] pushPS(a) pushPS(b) return NEXT end) QDUP_CFA = defPrimWord("?DUP", () -> begin ensurePSDepth(1) val = mem[reg.PSP] if val != 0 pushPS(val) end return NEXT end) INCR_CFA = defPrimWord("1+", () -> begin ensurePSDepth(1) mem[reg.PSP] += 1 return NEXT end) DECR_CFA = defPrimWord("1-", () -> begin ensurePSDepth(1) mem[reg.PSP] -= 1 return NEXT end) INCR2_CFA = defPrimWord("2+", () -> begin ensurePSDepth(1) mem[reg.PSP] += 2 return NEXT end) DECR2_CFA = defPrimWord("2-", () -> begin ensurePSDepth(1) mem[reg.PSP] -= 2 return NEXT end) ADD_CFA = defPrimWord("+", () -> begin b = popPS() a = popPS() pushPS(a+b) return NEXT end) SUB_CFA = defPrimWord("-", () -> begin b = popPS() a = popPS() pushPS(a-b) return NEXT end) MUL_CFA = defPrimWord("*", () -> begin b = popPS() a = popPS() pushPS(a*b) return NEXT end) DIVMOD_CFA = defPrimWord("/MOD", () -> begin b = popPS() a = popPS() q,r = divrem(a,b) pushPS(r) pushPS(q) return NEXT end) TWOMUL_CFA = defPrimWord("2*", () -> begin pushPS(popPS() << 1) return NEXT end) TWODIV_CFA = defPrimWord("2/", () -> begin pushPS(popPS() >> 1) return NEXT end) EQ_CFA = defPrimWord("=", () -> begin b = popPS() a = popPS() pushPS(a==b ? -1 : 0) return NEXT end) NE_CFA = defPrimWord("<>", () -> begin b = popPS() a = popPS() pushPS(a!=b ? -1 : 0) return NEXT end) LT_CFA = defPrimWord("<", () -> begin b = popPS() a = popPS() pushPS(a", () -> begin b = popPS() a = popPS() pushPS(a>b ? -1 : 0) return NEXT end) LE_CFA = defPrimWord("<=", () -> begin b = popPS() a = popPS() pushPS(a<=b ? -1 : 0) return NEXT end) GE_CFA = defPrimWord(">=", () -> begin b = popPS() a = popPS() pushPS(a>=b ? -1 : 0) return NEXT end) ZE_CFA = defPrimWord("0=", () -> begin pushPS(popPS() == 0 ? -1 : 0) return NEXT end) ZNE_CFA = defPrimWord("0<>", () -> begin pushPS(popPS() != 0 ? -1 : 0) return NEXT end) ZLT_CFA = defPrimWord("0<", () -> begin pushPS(popPS() < 0 ? -1 : 0) return NEXT end) ZGT_CFA = defPrimWord("0>", () -> begin pushPS(popPS() > 0 ? -1 : 0) return NEXT end) ZLE_CFA = defPrimWord("0<=", () -> begin pushPS(popPS() <= 0 ? -1 : 0) return NEXT end) ZGE_CFA = defPrimWord("0>=", () -> begin pushPS(popPS() >= 0 ? -1 : 0) return NEXT end) AND_CFA = defPrimWord("AND", () -> begin b = popPS() a = popPS() pushPS(a & b) return NEXT end) OR_CFA = defPrimWord("OR", () -> begin b = popPS() a = popPS() pushPS(a | b) return NEXT end) XOR_CFA = defPrimWord("XOR", () -> begin b = popPS() a = popPS() pushPS(xor(a, b)) return NEXT end) INVERT_CFA = defPrimWord("INVERT", () -> begin pushPS(~popPS()) return NEXT end) # Literals LIT_CFA = defPrimWord("LIT", () -> begin pushPS(mem[reg.IP]) reg.IP += 1 return NEXT end) # Memory primitives STORE_CFA = defPrimWord("!", () -> begin addr = popPS() dat = popPS() mem[addr] = dat return NEXT end) FETCH_CFA = defPrimWord("@", () -> begin addr = popPS() pushPS(mem[addr]) return NEXT end) ADDSTORE_CFA = defPrimWord("+!", () -> begin addr = popPS() toAdd = popPS() mem[addr] += toAdd return NEXT end) SUBSTORE_CFA = defPrimWord("-!", () -> begin addr = popPS() toSub = popPS() mem[addr] -= toSub return NEXT end) # Return Stack TOR_CFA = defPrimWord(">R", () -> begin pushRS(popPS()) return NEXT end) FROMR_CFA = defPrimWord("R>", () -> begin pushPS(popRS()) return NEXT end) RFETCH_CFA = defPrimWord("R@", () -> begin pushPS(mem[reg.RSP]) return NEXT end) RSPFETCH_CFA = defPrimWord("RSP@", () -> begin pushPS(reg.RSP) return NEXT end) RSPSTORE_CFA = defPrimWord("RSP!", () -> begin reg.RSP = popPS() return NEXT end) RDROP_CFA = defPrimWord("RDROP", () -> begin popRS() return NEXT end) # Parameter Stack PSPFETCH_CFA = defPrimWord("PSP@", () -> begin pushPS(reg.PSP) return NEXT end) PSPSTORE_CFA = defPrimWord("PSP!", () -> begin reg.PSP = popPS() return NEXT end) # Working Register WFETCH_CFA = defPrimWord("W@", () -> begin pushPS(reg.W) return NEXT end) WSTORE_CFA = defPrimWord("W!", () -> begin reg.W = popPS() return NEXT end) # I/O openFiles = Dict{Int64,IOStream}() nextFileID = 1 ## File access modes FAM_RO = 0 FAM_WO = 1 FAM_RO_CFA = defConst("R/O", FAM_RO) FAM_WO_CFA = defConst("W/O", FAM_WO) function fileOpener(create::Bool) fam = popPS() fnameLen = popPS() fnameAddr = popPS() fname = getString(fnameAddr, fnameLen) if create && !isfile(fname) pushPS(0) pushPS(-1) # error return NEXT end if (fam == FAM_RO) mode = "r" else mode = "w" end global nextFileID openFiles[nextFileID] = open(fname, mode) pushPS(nextFileID) pushPS(0) nextFileID += 1 end OPEN_FILE_CFA = defPrimWord("OPEN-FILE", () -> begin fileOpener(false) return NEXT end); CREATE_FILE_CFA = defPrimWord("CREATE-FILE", () -> begin fileOpener(true) return NEXT end); CLOSE_FILE_CFA = defPrimWord("CLOSE-FILE", () -> begin fid = popPS() close(openFiles[fid]) delete!(openFiles, fid) pushPS(0) # Result code 0 return NEXT end) CLOSE_FILES_CFA = defPrimWord("CLOSE-FILES", () -> begin for fh in values(openFiles) close(fh) end empty!(openFiles) pushPS(0) # Result code 0 return NEXT end) READ_LINE_CFA = defPrimWord("READ-LINE", () -> begin fid = popPS() maxSize = popPS() addr = popPS() if !(fid in keys(openFiles)) error(string("Invalid FID ", fid, ".")) end fh = openFiles[fid] line = readline(fh, chomp=false) eofFlag = endswith(line, '\n') ? 0 : -1 line = chomp(line) putString(line, addr, maxSize) pushPS(length(line)) pushPS(eofFlag) pushPS(0) return NEXT end) READ_FILE_CFA = defPrimWord("READ-FILE", () -> begin fid = popPS() size = popPS() addr = popPS() fh = openFiles[fid] string = join(map(x -> Char(x), read(fh, size)), "") eofFlag = length(string) == size ? 0 : -1 ; putString(string, addr, length(string)) pushPS(length(string)) pushPS(eofFlag) return NEXT end) EMIT_CFA = defPrimWord("EMIT", () -> begin print(Char(popPS())) return NEXT end) function raw_mode!(mode::Bool) if ccall(:jl_tty_set_mode, Int32, (Ptr{Void}, Int32), STDIN.handle, mode) != 0 throw("FATAL: Terminal unable to enter raw mode.") end end function getKey() raw_mode!(true) byte = read(STDIN, 1)[1] raw_mode!(false) if byte == 0x0d return 0x0a elseif byte == 127 return 0x08 else return byte end end KEY_CFA = defPrimWord("KEY", () -> begin pushPS(Int(getKey())) return NEXT end) function getLineFromSTDIN() function getFrag(s) chars = collect(s) slashIdx = findlast(chars, '\\') if slashIdx > 0 return join(chars[slashIdx:length(chars)]) else return nothing end end function backspaceStr(s, bsCount) oldLen = length(s) newLen = max(0, oldLen - bsCount) return join(collect(s)[1:newLen]) end line = "" while true key = Char(getKey()) if key == '\n' print(" ") return String(line) elseif key == '\x04' if isempty(line) return string("\x04") end elseif key == '\b' if !isempty(line) print("\b\033[K") line = backspaceStr(line, 1) end elseif key == '\e' # Strip ANSI escape sequence nextKey = Char(getKey()) if nextKey == '[' while true nextKey = Char(getKey()) if nextKey >= '@' || nextKey <= '~' break end end end elseif key == '\t' # Currently do nothing frag = getFrag(line) if frag != nothing if haskey(REPLCompletions.latex_symbols, frag) print(repeat("\b", length(frag))) print("\033[K") comp = REPLCompletions.latex_symbols[frag] line = string(backspaceStr(line, length(frag)), comp) print(comp) end end else print(key) line = string(line, key) end end end SPAN, SPAN_CFA = defNewVar("SPAN", 0) EXPECT_CFA = defPrimWord("EXPECT", () -> begin maxLen = popPS() addr = popPS() line = getLineFromSTDIN() mem[SPAN] = min(length(line), maxLen) putString(line, addr, maxLen) return NEXT end) BASE, BASE_CFA = defNewVar("BASE", 10) NUMBER_CFA = defPrimWord("NUMBER", () -> begin wordAddr = popPS()+1 wordLen = mem[wordAddr-1] s = getString(wordAddr, wordLen) pushPS(parse(Int64, s, mem[BASE])) return NEXT end) # Dictionary searches FROMLINK_CFA = defPrimWord("LINK>", () -> begin addr = popPS() lenAndFlags = mem[addr+1] len = lenAndFlags & F_LENMASK pushPS(addr + 2 + len) return NEXT end) NUMCONTEXT, NUMCONTEXT_CFA = defNewVar("#CONTEXT", 1) createHeader("FORTH", 0) FORTH_CFA = mem[H] dictWrite(defPrim(() -> begin mem[CONTEXT + mem[NUMCONTEXT] - 1] = reg.W return NEXT end, name="FORTH")) dictWrite(0) # cell for latest CURRENT_CFA = defExistingVar("CURRENT", CURRENT) # Switch to new FORTH vocabulary cfa mem[FORTH_CFA+1] = mem[mem[CURRENT]+1] mem[CURRENT] = FORTH_CFA CONTEXT, CONTEXT_CFA = defNewVar("CONTEXT", zeros(Int64, 10)) mem[CONTEXT] = FORTH_CFA FINDVOCAB_CFA = defPrimWord("FINDVOCAB", () -> begin vocabCFA = popPS() countedAddr = popPS() wordAddr = countedAddr + 1 wordLen = mem[countedAddr] word = lowercase(getString(wordAddr, wordLen)) lfa = vocabCFA+1 lenAndFlags = 0 while (lfa = mem[lfa]) > 0 lenAndFlags = mem[lfa+1] len = lenAndFlags & F_LENMASK hidden = (lenAndFlags & F_HIDDEN) == F_HIDDEN if hidden || len != wordLen continue end thisWord = lowercase(getString(lfa+2, len)) if thisWord == word break end end if lfa > 0 pushPS(lfa) callPrim(mem[FROMLINK_CFA]) if (lenAndFlags & F_IMMED) == F_IMMED pushPS(1) else pushPS(-1) end else pushPS(countedAddr) pushPS(0) end return NEXT end) FIND_CFA = defPrimWord("FIND", () -> begin countedAddr = popPS() context = mem[CONTEXT:(CONTEXT+mem[NUMCONTEXT]-1)] for vocabCFA in reverse(context) pushPS(countedAddr) pushPS(vocabCFA) callPrim(mem[FINDVOCAB_CFA]) callPrim(mem[DUP_CFA]) if popPS() != 0 return NEXT else popPS() popPS() end end pushPS(countedAddr) pushPS(0) return NEXT end) # Branching BRANCH_CFA = defPrimWord("BRANCH", () -> begin reg.IP += mem[reg.IP] return NEXT end) ZBRANCH_CFA = defPrimWord("0BRANCH", () -> begin if (popPS() == 0) reg.IP += mem[reg.IP] else reg.IP += 1 end return NEXT end) # Strings LITSTRING_CFA = defPrimWord("LITSTRING", () -> begin len = mem[reg.IP] reg.IP += 1 pushPS(reg.IP) pushPS(len) reg.IP += len return NEXT end) TYPE_CFA = defPrimWord("TYPE", () -> begin len = popPS() addr = popPS() str = getString(addr, len) print(str) return NEXT end) # Interpreter/Compiler-specific I/O TIB_CFA = defConst("TIB", TIB) NUMTIB, NUMTIB_CFA = defNewVar("#TIB", 0) FIB_CFA = defConst("FIB", FIB) NUMFIB, NUMFIB_CFA = defNewVar("#FIB", 0) IB_CFA = defPrimWord("IB", () -> begin pushPS(mem[SOURCE_ID_VAR] == 0 ? TIB : FIB) return NEXT end) NUMIB_CFA = defPrimWord("#IB", () -> begin pushPS(mem[SOURCE_ID_VAR] == 0 ? NUMTIB : NUMFIB) return NEXT end) TOIN, TOIN_CFA = defNewVar(">IN", 0) SOURCE_ID_VAR, SOURCE_ID_VAR_CFA = defNewVar("SOURCE-ID-VAR", 0) QUERY_CFA = defWord("QUERY", [TIB_CFA, LIT_CFA, 160, EXPECT_CFA, SPAN_CFA, FETCH_CFA, NUMTIB_CFA, STORE_CFA, LIT_CFA, 0, TOIN_CFA, STORE_CFA, EXIT_CFA]) EOF_FLAG, EOF_FLAG_CFA = defNewVar("EOF-FLAG", 0) # ( fid -- ) # EOF-FLAG set to true if EOF is reached QUERY_FILE_CFA = defWord("QUERY-FILE", [FIB_CFA, LIT_CFA, 160, ROT_CFA, READ_LINE_CFA, DROP_CFA, EOF_FLAG_CFA, STORE_CFA, NUMFIB_CFA, STORE_CFA, LIT_CFA, 0, TOIN_CFA, STORE_CFA, EXIT_CFA]) WORD_CFA = defPrimWord("WORD", () -> begin delim = popPS() if mem[SOURCE_ID_VAR] == 0 bufferAddr = TIB sizeAddr = NUMTIB else bufferAddr = FIB sizeAddr = NUMFIB end # Chew up initial occurrences of delim while (mem[TOIN] begin mem[mem[H]] = popPS() mem[H] += 1 return NEXT end) HERE_CFA = defWord("HERE", [H_CFA, FETCH_CFA, EXIT_CFA]) HEADER_CFA = defPrimWord("HEADER", () -> begin wordAddr = popPS()+1 wordLen = mem[wordAddr-1] word = getString(wordAddr, wordLen) createHeader(word, 0) return NEXT end) CREATE_CFA = defWord("CREATE", [LIT_CFA, 32, WORD_CFA, HEADER_CFA, LIT_CFA, DOVAR, COMMA_CFA, EXIT_CFA]) DODOES = defPrim(() -> begin pushRS(reg.IP) reg.IP = popPS() pushPS(reg.W + 1) return NEXT end, name="DODOES") DOES_HELPER_CFA = defPrimWord("(DOES>)", () -> begin pushPS(mem[mem[CURRENT]+1]) callPrim(mem[FROMLINK_CFA]) cfa = popPS() runtimeAddr = popPS() mem[cfa] = defPrim(eval(:(() -> begin pushPS($(runtimeAddr)) return DODOES end)), name="doesPrim") return NEXT end, flags=F_IMMED | F_HIDDEN) DOES_CFA = defWord("DOES>", [LIT_CFA, LIT_CFA, COMMA_CFA, HERE_CFA, LIT_CFA, 3, ADD_CFA, COMMA_CFA, LIT_CFA, DOES_HELPER_CFA, COMMA_CFA, LIT_CFA, EXIT_CFA, COMMA_CFA, EXIT_CFA], flags=F_IMMED) LBRAC_CFA = defPrimWord("[", () -> begin mem[STATE] = 0 return NEXT end, flags=F_IMMED) RBRAC_CFA = defPrimWord("]", () -> begin mem[STATE] = 1 return NEXT end, flags=F_IMMED) HIDDEN_CFA = defPrimWord("HIDDEN", () -> begin lenAndFlagsAddr = mem[mem[CURRENT]+1] + 1 mem[lenAndFlagsAddr] = xor(mem[lenAndFlagsAddr], F_HIDDEN) return NEXT end) COLON_CFA = defWord(":", [LIT_CFA, 32, WORD_CFA, HEADER_CFA, LIT_CFA, DOCOL, COMMA_CFA, HIDDEN_CFA, RBRAC_CFA, EXIT_CFA]) SEMICOLON_CFA = defWord(";", [LIT_CFA, EXIT_CFA, COMMA_CFA, HIDDEN_CFA, LBRAC_CFA, EXIT_CFA], flags=F_IMMED) IMMEDIATE_CFA = defPrimWord("IMMEDIATE", () -> begin lenAndFlagsAddr = mem[mem[CURRENT]+1] + 1 mem[lenAndFlagsAddr] = xor(mem[lenAndFlagsAddr], F_IMMED) return NEXT end, flags=F_IMMED) # ( addr n -- primAddr ) CREATE_PRIM_CFA = defPrimWord("CREATE-PRIM", () -> begin len = popPS() addr = popPS() exprString = string("() -> begin\n", getString(addr, len), "\n", "return NEXT\n", "end") func = eval(parse(exprString)) pushPS(defPrim(func)) return NEXT end) # Outer Interpreter EXECUTE_CFA = defPrimWord("EXECUTE", () -> begin reg.W = popPS() return mem[reg.W] end) INTERPRET_CFA = defWord("INTERPRET", [LIT_CFA, 32, WORD_CFA, # Read next space-delimited word DUP_CFA, FETCH_CFA, ZE_CFA, ZBRANCH_CFA, 3, DROP_CFA, EXIT_CFA, # Exit if input buffer is exhausted STATE_CFA, FETCH_CFA, ZBRANCH_CFA, 24, # Compiling FIND_CFA, QDUP_CFA, ZBRANCH_CFA, 13, # Found word. LIT_CFA, -1, EQ_CFA, INVERT_CFA, ZBRANCH_CFA, 4, # Immediate: Execute! EXECUTE_CFA, BRANCH_CFA, -26, # Not immediate: Compile! COMMA_CFA, BRANCH_CFA, -29, # No word found, parse number NUMBER_CFA, LIT_CFA, LIT_CFA, COMMA_CFA, COMMA_CFA, BRANCH_CFA, -36, # Interpreting FIND_CFA, QDUP_CFA, ZBRANCH_CFA, 5, # Found word. Execute! DROP_CFA, EXECUTE_CFA, BRANCH_CFA, -44, # No word found, parse number and leave on stack NUMBER_CFA, BRANCH_CFA, -47, EXIT_CFA]) PROMPT_CFA = defPrimWord("PROMPT", () -> begin if mem[STATE] == 0 print(" ok") end println() return NEXT end) QUIT_CFA = defWord("QUIT", [LIT_CFA, 0, STATE_CFA, STORE_CFA, # Set mode to interpret LIT_CFA, 0, SOURCE_ID_VAR_CFA, STORE_CFA, # Set terminal as input stream LIT_CFA, 0, NUMTIB_CFA, STORE_CFA, # Clear the input buffer RSP0_CFA, RSPSTORE_CFA, # Clear the return stack QUERY_CFA, # Read line of input INTERPRET_CFA, PROMPT_CFA, # Interpret line BRANCH_CFA,-4]) # Loop INCLUDED_CFA = defWord("INCLUDED", [LIT_CFA, 0, STATE_CFA, STORE_CFA, # Set mode to interpret FAM_RO_CFA, OPEN_FILE_CFA, DROP_CFA, # Open the file SOURCE_ID_VAR_CFA, FETCH_CFA, SWAP_CFA, # Store current source on stack SOURCE_ID_VAR_CFA, STORE_CFA, # Mark this as the current source SOURCE_ID_VAR_CFA, FETCH_CFA, QUERY_FILE_CFA, # Read line from file EOF_FLAG_CFA, FETCH_CFA, NUMFIB_CFA, FETCH_CFA, ZE_CFA, AND_CFA, # Test for EOF and empty line INVERT_CFA, ZBRANCH_CFA, 4, # Break out if EOF INTERPRET_CFA, # Interpret line BRANCH_CFA, -14, # Loop SOURCE_ID_VAR_CFA, FETCH_CFA, CLOSE_FILE_CFA, DROP_CFA, # Close file SOURCE_ID_VAR_CFA, STORE_CFA, # Restore input source LIT_CFA, 0, NUMIB_CFA, STORE_CFA, # Zero #IB LIT_CFA, 0, TOIN_CFA, STORE_CFA, # Zero >IN EXIT_CFA]) INCLUDE_CFA = defWord("INCLUDE", [LIT_CFA, 32, WORD_CFA, DUP_CFA, INCR_CFA, SWAP_CFA, FETCH_CFA, INCLUDED_CFA, EXIT_CFA]); ABORT_CFA = defWord("ABORT", [CLOSE_FILES_CFA, DROP_CFA, PSP0_CFA, PSPSTORE_CFA, QUIT_CFA]) BYE_CFA = defPrimWord("BYE", () -> begin if mem[SOURCE_ID_VAR] == 0 println("\nBye!") end return 0 end) EOF_CFA = defPrimWord("\x04", () -> begin return 0 end) ### Library loading ### oldCWD = "" SETLIBCWD_CFA = defPrimWord("SETLIBCWD", () -> begin global oldCWD = pwd() if !isfile("lib.4th") # Exception for debugging. cd(Pkg.dir("forth","src")) end return NEXT end) RESTORECWD_CFA = defPrimWord("RESTORECWD", () -> begin cd(oldCWD) return NEXT end) INCLUDED_LIB_CFA = defWord("INCLUDED-LIB", [SETLIBCWD_CFA, INCLUDED_CFA, RESTORECWD_CFA, EXIT_CFA]) INCLUDE_LIB_CFA = defWord("INCLUDE-LIB", [LIT_CFA, 32, WORD_CFA, DUP_CFA, INCR_CFA, SWAP_CFA, FETCH_CFA, INCLUDED_LIB_CFA, EXIT_CFA]); SKIP_WELCOME, SKIP_WELCOME_CFA = defNewVar("SKIP-WELCOME", 0) #### VM loop #### initialized = false libFileName = "lib.4th" function run(fileName=nothing; initialize=true) # Start with IP pointing to first instruction of outer interpreter pushRS(QUIT_CFA+1) # Include optional file if fileName != nothing putString(fileName, mem[H]) pushPS(mem[H]) mem[H] += length(fileName) pushPS(length(fileName)) pushRS(INCLUDED_CFA+1) mem[SKIP_WELCOME] = -1 end # Load library files global initialized, libFileName if !initialized && initialize if libFileName != nothing #print("Including definitions from $libFileName...") putString(libFileName, mem[H]) pushPS(mem[H]) pushPS(length(libFileName)) pushRS(INCLUDED_LIB_CFA+1) initialized = true else println("No library file found. Only primitive words available.") end end # Primitive processing loop. # Everyting else is simply a consequence of this loop! jmp = mem[EXIT_CFA] while jmp != 0 try #print("Entering prim $(getPrimName(jmp)), PS: ") #printPS() jmp = callPrim(jmp) catch ex println(string("Error in primitive '", getPrimName(jmp), "' at address ", jmp)) showerror(STDOUT, ex) println() # QUIT reg.IP = ABORT_CFA + 1 jmp = NEXT end end end # Debugging tools TRACE_CFA = defPrimWord("TRACE", () -> begin println("reg.W: $(reg.W) reg.IP: $(reg.IP)") print("PS: "); printPS() print("RS: "); printRS() print("[paused]") readline() return NEXT end) function dump(startAddr::Int64; count::Int64 = 100, cellsPerLine::Int64 = 10) chars = Array{Char,1}(cellsPerLine) lineStartAddr = cellsPerLine*div((startAddr-1),cellsPerLine) + 1 endAddr = startAddr + count - 1 q, r = divrem((endAddr-lineStartAddr+1), cellsPerLine) numLines = q + (r > 0 ? 1 : 0) i = lineStartAddr for l in 1:numLines print(i,":") for c in 1:cellsPerLine if i >= startAddr && i <= endAddr print("\t",mem[i]) if mem[i]>=32 && mem[i]<128 chars[c] = Char(mem[i]) else chars[c] = '.' end else print("\t") chars[c] = ' ' end i += 1 end println("\t", String(chars)) end end function printPS() count = reg.PSP - PSP0 if count > 0 print("<$count>") for i in (PSP0+1):reg.PSP print(" $(mem[i])") end println() else println("Parameter stack empty") end end function printRS() count = reg.RSP - RSP0 if count > 0 print("<$count>") for i in (RSP0+1):reg.RSP print(" $(mem[i])") end println() else println("Return stack empty") end end DUMP = defPrimWord("DUMP", () -> begin count = popPS() addr = popPS() println() dump(addr, count=count) return NEXT end) end