module forth # VM mem size size_mem = 640*1024 # Buffer sizes size_RS = 1024 # Return stack size size_PS = 1024 # Parameter stack size size_TIB = 1096 # Terminal input buffer size # The mem array constitutes the memory of the VM. It has the following geography: # # mem = +-----------------------+ # | Built-in Variables | # +-----------------------+ # | Return Stack | # +-----------------------+ # | Parameter Stack | # +-----------------------+ # | Terminal Input Buffer | # +-----------------------+ # | Dictionary | # +-----------------------+ # # Note that all words (user-defined, primitive, variables, etc) are included in # the dictionary. # # Simple linear addressing is used with one exception: references to primitive code # blocks, which are represented as anonymous functions, appear the negative index # into the primitives array which contains only these functions. mem = Array{Int64,1}(size_mem) primitives = Array{Function,1}() primNames = Array{ASCIIString,1}() # Built-in variables nextVarAddr = 1 RSP0 = nextVarAddr; nextVarAddr += 1 PSP0 = nextVarAddr; nextVarAddr += 1 HERE = nextVarAddr; nextVarAddr += 1 LATEST = nextVarAddr; nextVarAddr += 1 mem[RSP0] = nextVarAddr # bottom of RS mem[PSP0] = mem[RSP0] + size_RS # bottom of PS TIB = mem[PSP0] + size_PS # address of terminal input buffer mem[HERE] = TIB + size_TIB # location of bottom of dictionary mem[LATEST] = 0 # no previous definition DICT = mem[HERE] # Save bottom of dictionary as constant # VM registers type Reg RSP::Int64 # Return stack pointer PSP::Int64 # Parameter/data stack pointer IP::Int64 # Instruction pointer W::Int64 # Working register X::Int64 # Extra register end reg = Reg(mem[RSP0], mem[PSP0], 0, 0, 0) # Stack manipulation type StackUnderflow <: Exception end getRSDepth() = reg.RSP - mem[RSP0] getPSDepth() = reg.PSP - mem[PSP0] function ensurePSDepth(depth::Int64) if getPSDepth() begin pushPS($(varAddr)) return mem[NEXT] end))) end function defNewVar(name::AbstractString, initial::Int64; flags::Int64=0) createHeader(name, flags) codeWordAddr = mem[HERE] varAddr = mem[HERE] + 1 push!(primitives, eval(:(() -> begin pushPS($(varAddr)) return mem[NEXT] end))) mem[mem[HERE]] = -length(primitives); mem[HERE] += 1 mem[mem[HERE]] = initial; mem[HERE] += 1 return varAddr, codeWordAddr end function defConst(name::AbstractString, val::Int64; flags::Int64=0) defPrim(name, eval(:(() -> begin pushPS($(val)) return mem[NEXT] end))) return val end function defWord(name::AbstractString, wordAddrs::Array{Int64,1}; flags::Int64=0) createHeader(name, flags) addr = mem[HERE] mem[mem[HERE]] = mem[DOCOL] mem[HERE] += 1 for wordAddr in wordAddrs mem[mem[HERE]] = wordAddr mem[HERE] += 1 end return addr end # Threading Primitives (inner interpreter) NEXT = defPrim("NEXT", () -> begin reg.W = mem[reg.IP] reg.IP += 1 return mem[reg.W] end) DOCOL = defPrim("DOCOL", () -> begin pushRS(reg.IP) reg.IP = reg.W + 1 return mem[NEXT] end) EXIT = defPrim("EXIT", () -> begin reg.IP = popRS() return mem[NEXT] end) # Basic forth primitives DROP = defPrim("DROP", () -> begin popPS() return mem[NEXT] end) SWAP = defPrim("SWAP", () -> begin a = popPS() b = popPS() pushPS(a) pushPS(b) return mem[NEXT] end) DUP = defPrim("DUP", () -> begin pushPS(mem[reg.PSP]) return mem[NEXT] end) OVER = defPrim("OVER", () -> begin ensurePSDepth(2) pushPS(mem[reg.PSP-1]) return mem[NEXT] end) ROT = defPrim("ROT", () -> begin a = popPS() b = popPS() c = popPS() pushPS(a) pushPS(c) pushPS(b) return mem[NEXT] end) NROT = defPrim("-ROT", () -> begin a = popPS() b = popPS() c = popPS() pushPS(b) pushPS(a) pushPS(c) return mem[NEXT] end) TWODROP = defPrim("2DROP", () -> begin popPS() popPS() return mem[NEXT] end) TWODUP = defPrim("2DUP", () -> begin ensurePSDepth(2) a = mem[reg.PSP-1] b = mem[reg.PSP] pushPS(a) pushPS(b) return mem[NEXT] end) TWOSWAP = defPrim("2SWAP", () -> begin a = popPS() b = popPS() c = popPS() d = popPS() pushPS(b) pushPS(a) pushPS(c) pushPS(d) return mem[NEXT] end) QDUP = defPrim("?DUP", () -> begin ensurePSDepth(1) val = mem[reg.PSP] if val != 0 pushPS(val) end return mem[NEXT] end) INCR = defPrim("1+", () -> begin ensurePSDepth(1) mem[reg.PSP] += 1 return mem[NEXT] end) DECR = defPrim("1-", () -> begin ensurePSDepth(1) mem[reg.PSP] -= 1 return mem[NEXT] end) INCR2 = defPrim("2+", () -> begin ensurePSDepth(1) mem[reg.PSP] += 2 return mem[NEXT] end) DECR2 = defPrim("2-", () -> begin ensurePSDepth(1) mem[reg.PSP] -= 2 return mem[NEXT] end) ADD = defPrim("+", () -> begin b = popPS() a = popPS() pushPS(a+b) return mem[NEXT] end) SUB = defPrim("-", () -> begin b = popPS() a = popPS() pushPS(a-b) return mem[NEXT] end) MUL = defPrim("*", () -> begin b = popPS() a = popPS() pushPS(a*b) return mem[NEXT] end) DIVMOD = defPrim("/MOD", () -> begin b = popPS() a = popPS() q,r = divrem(a,b) pushPS(r) pushPS(q) return mem[NEXT] end) EQU = defPrim("=", () -> begin b = popPS() a = popPS() pushPS(a==b ? -1 : 0) return mem[NEXT] end) NEQU = defPrim("<>", () -> begin b = popPS() a = popPS() pushPS(a!=b ? -1 : 0) return mem[NEXT] end) LT = defPrim("<", () -> begin b = popPS() a = popPS() pushPS(a", () -> begin b = popPS() a = popPS() pushPS(a>b ? -1 : 0) return mem[NEXT] end) LE = defPrim("<=", () -> begin b = popPS() a = popPS() pushPS(a<=b ? -1 : 0) return mem[NEXT] end) GE = defPrim(">=", () -> begin b = popPS() a = popPS() pushPS(a>=b ? -1 : 0) return mem[NEXT] end) ZEQU = defPrim("0=", () -> begin pushPS(popPS() == 0 ? -1 : 0) return mem[NEXT] end) ZNEQU = defPrim("0<>", () -> begin pushPS(popPS() != 0 ? -1 : 0) return mem[NEXT] end) ZLT = defPrim("0<", () -> begin pushPS(popPS() < 0 ? -1 : 0) return mem[NEXT] end) ZGT = defPrim("0>", () -> begin pushPS(popPS() > 0 ? -1 : 0) return mem[NEXT] end) ZLE = defPrim("0<=", () -> begin pushPS(popPS() <= 0 ? -1 : 0) return mem[NEXT] end) ZGE = defPrim("0>=", () -> begin pushPS(popPS() >= 0 ? -1 : 0) return mem[NEXT] end) AND = defPrim("AND", () -> begin b = popPS() a = popPS() pushPS(a & b) return mem[NEXT] end) OR = defPrim("OR", () -> begin b = popPS() a = popPS() pushPS(a | b) return mem[NEXT] end) XOR = defPrim("XOR", () -> begin b = popPS() a = popPS() pushPS(a $ b) return mem[NEXT] end) INVERT = defPrim("INVERT", () -> begin pushPS(~popPS()) return mem[NEXT] end) # Literals LIT = defPrim("LIT", () -> begin pushPS(mem[reg.IP]) reg.IP += 1 return mem[NEXT] end) # Memory primitives STORE = defPrim("!", () -> begin addr = popPS() dat = popPS() mem[addr] = dat return mem[NEXT] end) FETCH = defPrim("@", () -> begin addr = popPS() pushPS(mem[addr]) return mem[NEXT] end) ADDSTORE = defPrim("+!", () -> begin addr = popPS() toAdd = popPS() mem[addr] += toAdd return mem[NEXT] end) SUBSTORE = defPrim("-!", () -> begin addr = popPS() toSub = popPS() mem[addr] -= toSub return mem[NEXT] end) # Built-in variables HERE_CFA = defExistingVar("HERE", HERE) LATEST_CFA = defExistingVar("LATEST", LATEST) PSP0_CFA = defExistingVar("PSP0", PSP0) RSP0_CFA = defExistingVar("RSP0", RSP0) STATE, STATE_CFA = defNewVar("STATE", 0) BASE, BASE_CFA = defNewVar("BASE", 10) # Constants defConst("VERSION", 1) defConst("DOCOL", DOCOL) defConst("DICT", DICT) F_IMMED = defConst("F_IMMED", 128) F_HIDDEN = defConst("F_HIDDEN", 256) F_LENMASK = defConst("F_LENMASK", 127) # Return Stack TOR = defPrim(">R", () -> begin pushRS(popPS()) return mem[NEXT] end) FROMR = defPrim("R>", () -> begin pushPS(popRS()) return mem[NEXT] end) RSPFETCH = defPrim("RSP@", () -> begin pushPS(reg.RSP) return mem[NEXT] end) RSPSTORE = defPrim("RSP!", () -> begin RSP = popPS() return mem[NEXT] end) RDROP = defPrim("RDROP", () -> begin popRS() return mem[NEXT] end) # Parameter Stack PSPFETCH = defPrim("PSP@", () -> begin pushPS(reg.PSP) return mem[NEXT] end) PSPSTORE = defPrim("PSP!", () -> begin PSP = popPS() return mem[NEXT] end) # I/O defConst("TIB", TIB) NUMTIB, NUMTIB_CFA = defNewVar("#TIB", 0) TOIN, TOIN_CFA = defNewVar(">IN", 0) KEY = defPrim("KEY", () -> begin if mem[TOIN] >= mem[NUMTIB] mem[TOIN] = 0 line = readline() mem[NUMTIB] = length(line) putString(line, TIB) end pushPS(mem[TIB + mem[TOIN]]) mem[TOIN] += 1 return mem[NEXT] end) EMIT = defPrim("EMIT", () -> begin print(Char(popPS())) return mem[NEXT] end) WORD = defPrim("WORD", () -> begin c = -1 skip_to_end = false while true callPrim(mem[KEY]) c = Char(popPS()) if c == '\\' skip_to_end = true continue end if skip_to_end if c == '\n' skip_to_end = false end continue end if c == ' ' || c == '\t' continue end break end wordAddr = mem[HERE] offset = 0 if c == '\n' # Treat newline as a special word mem[wordAddr + offset] = Int64(c) pushPS(wordAddr) pushPS(1) return mem[NEXT] end while true mem[wordAddr + offset] = Int64(c) offset += 1 callPrim(mem[KEY]) c = Char(popPS()) if c == ' ' || c == '\t' || c == '\n' # Rewind KEY mem[TOIN] -= 1 break end end wordLen = offset pushPS(wordAddr) pushPS(wordLen) return mem[NEXT] end) NUMBER = defPrim("NUMBER", () -> begin wordLen = popPS() wordAddr = popPS() s = getString(wordAddr, wordLen) try pushPS(parse(Int64, s, mem[BASE])) pushPS(0) catch pushPS(1) # Error indication end return mem[NEXT] end) # Dictionary searches FIND = defPrim("FIND", () -> begin wordLen = popPS() wordAddr = popPS() word = lowercase(getString(wordAddr, wordLen)) latest = LATEST i = 0 while (latest = mem[latest]) > 0 lenAndFlags = mem[latest+1] len = lenAndFlags & F_LENMASK hidden = (lenAndFlags & F_HIDDEN) == F_HIDDEN if hidden || len != wordLen continue end thisAddr = latest+2 thisWord = lowercase(getString(thisAddr, len)) if lowercase(thisWord) == lowercase(word) break end end pushPS(latest) return mem[NEXT] end) TOCFA = defPrim(">CFA", () -> begin addr = popPS() lenAndFlags = mem[addr+1] len = lenAndFlags & F_LENMASK pushPS(addr + 2 + len) return mem[NEXT] end) TODFA = defWord(">DFA", [TOCFA, INCR, EXIT]) # Compilation CREATE = defPrim("CREATE", () -> begin wordLen = popPS() wordAddr = popPS() word = getString(wordAddr, wordLen) createHeader(word, 0) return mem[NEXT] end) COMMA = defPrim(",", () -> begin mem[mem[HERE]] = popPS() mem[HERE] += 1 return mem[NEXT] end) LBRAC = defPrim("[", () -> begin mem[STATE] = 0 return mem[NEXT] end, flags=F_IMMED) RBRAC = defPrim("]", () -> begin mem[STATE] = 1 return mem[NEXT] end, flags=F_IMMED) HIDDEN = defPrim("HIDDEN", () -> begin addr = popPS() + 1 mem[addr] = mem[addr] $ F_HIDDEN return mem[NEXT] end) HIDE = defWord("HIDE", [WORD, FIND, HIDDEN, EXIT]) COLON = defWord(":", [WORD, CREATE, LIT, DOCOL, COMMA, LATEST, FETCH, HIDDEN, RBRAC, EXIT]) SEMICOLON = defWord(";", [LIT, EXIT, COMMA, LATEST, FETCH, HIDDEN, LBRAC, EXIT], flags=F_IMMED) IMMEDIATE = defPrim("IMMEDIATE", () -> begin lenAndFlagsAddr = mem[LATEST] + 1 mem[lenAndFlagsAddr] = mem[lenAndFlagsAddr] $ F_IMMED return mem[NEXT] end, flags=F_IMMED) TICK = defWord("'", [WORD, FIND, TOCFA, EXIT]) # Branching BRANCH = defPrim("BRANCH", () -> begin reg.IP += mem[reg.IP] return mem[NEXT] end) ZBRANCH = defPrim("0BRANCH", () -> begin if (popPS() == 0) reg.IP += mem[reg.IP] else reg.IP += 1 end return mem[NEXT] end) # Strings LITSTRING = defPrim("LITSTRING", () -> begin len = mem[reg.IP] reg.IP += 1 pushPS(reg.IP) pushPS(len) reg.IP += len return mem[NEXT] end) TELL = defPrim("TELL", () -> begin len = popPS() addr = popPS() str = getString(addr, len) print(str) return mem[NEXT] end) # Outer interpreter INTERPRET = defPrim("INTERPRET", () -> begin callPrim(mem[WORD]) wordName = getString(mem[reg.PSP-1], mem[reg.PSP]) println("... ", replace(wordName, "\n", "\\n"), " ...") callPrim(mem[TWODUP]) callPrim(mem[FIND]) wordAddr = mem[reg.PSP] if wordAddr>0 # Word in dictionary isImmediate = (mem[wordAddr+1] & F_IMMED) != 0 callPrim(mem[TOCFA]) callPrim(mem[ROT]) # get rid of extra copy of word string details popPS() popPS() if mem[STATE] == 0 || isImmediate # Execute! return mem[popPS()] else # Append CFA to dictionary callPrim(mem[COMMA]) end else # Not in dictionary, assume number popPS() callPrim(mem[NUMBER]) if popPS() != 0 println("Parse error at word: '$wordName'") return mem[NEXT] else end if mem[STATE] == 0 # Number already on stack! else # Append literal to dictionary pushPS(LIT) callPrim(mem[COMMA]) callPrim(mem[COMMA]) end end return mem[NEXT] end) QUIT = defWord("QUIT", [RSP0_CFA, RSPSTORE, INTERPRET, BRANCH,-2]) NL = defPrim("\n", () -> begin if mem[STATE] == 0 println(" ok") end return mem[NEXT] end) # Odds and Ends CHAR = defPrim("CHAR", () -> begin callPrim(mem[WORD]) wordLen = popPS() wordAddr = popPS() word = getString(wordAddr, wordLen) pushPS(Int64(word[1])) return mem[NEXT] end) EXECUTE = defPrim("EXECUTE", () -> begin return mem[popPS()] end) BYE = defPrim("BYE", () -> begin return 0 end) #### VM loop #### function runVM() # Start with IP pointing to first instruction of outer interpreter reg.IP = QUIT + 1 # Primitive processing loop. # Everyting else is simply a consequence of this loop! jmp = mem[NEXT] while (jmp = callPrim(jmp)) != 0 println("Evaluating prim $jmp [$(primNames[-jmp])]") end end # Debugging tools function dump(startAddr::Int64; count::Int64 = 100, cellsPerLine::Int64 = 10) chars = Array{Char,1}(cellsPerLine) lineStartAddr = cellsPerLine*div((startAddr-1),cellsPerLine) + 1 endAddr = startAddr + count - 1 q, r = divrem((endAddr-lineStartAddr+1), cellsPerLine) numLines = q + (r > 0 ? 1 : 0) i = lineStartAddr for l in 1:numLines print(i,":") for c in 1:cellsPerLine if i >= startAddr && i <= endAddr print("\t",mem[i]) if mem[i]>=32 && mem[i]<128 chars[c] = Char(mem[i]) else chars[c] = '.' end else print("\t") chars[c] = ' ' end i += 1 end println("\t", ASCIIString(chars)) end end function printPS() count = reg.PSP - mem[PSP0] if count > 0 print("<$count>") for i in (mem[PSP0]+1):reg.PSP print(" $(mem[i])") end println() else println("Parameter stack empty") end end function printRS() count = reg.RSP - mem[RSP0] if count > 0 print("<$count>") for i in (mem[RSP0]+1):reg.RSP print(" $(mem[i])") end println() else println("Return stack empty") end end end