module forth # VM mem size size_mem = 640*1024 # Buffer sizes size_RS = 1024 # Return stack size size_PS = 1024 # Parameter stack size size_TIB = 1096 # Terminal input buffer size # The mem array constitutes the memory of the VM. It has the following geography: # # mem = +-----------------------+ # | Built-in Variables | # +-----------------------+ # | Return Stack | # +-----------------------+ # | Parameter Stack | # +-----------------------+ # | Terminal Input Buffer | # +-----------------------+ # | Dictionary | # +-----------------------+ # # Note that all words (user-defined, primitive, variables, etc) are included in # the dictionary. # # Simple linear addressing is used with one exception: references to primitive code # blocks, which are represented as anonymous functions, appear the negative index # into the primitives array which contains only these functions. mem = Array{Int64,1}(size_mem) primitives = Array{Function,1}() # Built-in variables nextVarAddr = 1 RSP0 = nextVarAddr; nextVarAddr += 1 PSP0 = nextVarAddr; nextVarAddr += 1 HERE = nextVarAddr; nextVarAddr += 1 LATEST = nextVarAddr; nextVarAddr += 1 mem[RSP0] = nextVarAddr # bottom of RS mem[PSP0] = mem[RSP0] + size_RS # bottom of PS TIB = mem[PSP0] + size_PS # address of terminal input buffer mem[HERE] = TIB + size_TIB # location of bottom of dictionary mem[LATEST] = 0 # no previous definition DICT = mem[HERE] # Save bottom of dictionary as constant # VM registers type Reg RSP::Int64 # Return stack pointer PSP::Int64 # Parameter/data stack pointer IP::Int64 # Instruction pointer W::Int64 # Working register X::Int64 # Extra register end reg = Reg(mem[RSP0], mem[PSP0], 0, 0, 0) # Stack manipulation type StackUnderflow <: Exception end getRSDepth() = reg.RSP - mem[RSP0] getPSDepth() = reg.PSP - mem[PSP0] function ensurePSDepth(depth::Int64) if getPSDepth() begin pushPS($(varAddr)) return mem[NEXT] end))) end function defNewVar(name::AbstractString, initial::Int64; flags::Int64=0) createHeader(name, flags) varAddr = mem[HERE] + 1 push!(primitives, eval(:(() -> begin pushPS($(varAddr)) return mem[NEXT] end))) mem[mem[HERE]] = -length(primitives); mem[HERE] += 1 mem[mem[HERE]] = initial; mem[HERE] += 1 return varAddr end function defConst(name::AbstractString, val::Int64; flags::Int64=0) defPrim(name, eval(:(() -> begin pushPS($(val)) return mem[NEXT] end))) return val end function defWord(name::AbstractString, wordAddrs::Array{Int64,1}; flags::Int64=0) createHeader(name, flags) addr = mem[HERE] mem[mem[HERE]] = mem[DOCOL] mem[HERE] += 1 for wordAddr in wordAddrs mem[mem[HERE]] = wordAddr mem[HERE] += 1 end return addr end # Threading Primitives (inner interpreter) NEXT = defPrim("NEXT", () -> begin reg.W = mem[reg.IP] reg.IP += 1 return mem[reg.W] end) DOCOL = defPrim("DOCOL", () -> begin pushRS(reg.IP) reg.IP = reg.W + 1 return mem[NEXT] end) EXIT = defPrim("EXIT", () -> begin reg.IP = popRS() return mem[NEXT] end) # Basic forth primitives DROP = defPrim("DROP", () -> begin popPS() return mem[NEXT] end) SWAP = defPrim("SWAP", () -> begin a = popPS() b = popPS() pushPS(a) pushPS(b) return mem[NEXT] end) DUP = defPrim("DUP", () -> begin pushPS(mem[reg.PSP]) return mem[NEXT] end) OVER = defPrim("OVER", () -> begin ensurePSDepth(2) pushPS(mem[reg.PSP-1]) return mem[NEXT] end) ROT = defPrim("ROT", () -> begin a = popPS() b = popPS() c = popPS() pushPS(a) pushPS(c) pushPS(b) return mem[NEXT] end) NROT = defPrim("-ROT", () -> begin a = popPS() b = popPS() c = popPS() pushPS(b) pushPS(a) pushPS(c) return mem[NEXT] end) TWODROP = defPrim("2DROP", () -> begin popPS() popPS() return mem[NEXT] end) TWODUP = defPrim("2DUP", () -> begin ensurePSDepth(2) a = mem[reg.PSP-1] b = mem[reg.PSP] pushPS(a) pushPS(b) return mem[NEXT] end) TWOSWAP = defPrim("2SWAP", () -> begin a = popPS() b = popPS() c = popPS() d = popPS() pushPS(b) pushPS(a) pushPS(c) pushPS(d) return mem[NEXT] end) QDUP = defPrim("?DUP", () -> begin ensurePSDepth(1) val = mem[reg.PSP] if val != 0 pushPS(val) end return mem[NEXT] end) INCR = defPrim("1+", () -> begin ensurePSDepth(1) mem[reg.PSP] += 1 return mem[NEXT] end) DECR = defPrim("1-", () -> begin ensurePSDepth(1) mem[reg.PSP] -= 1 return mem[NEXT] end) INCR2 = defPrim("2+", () -> begin ensurePSDepth(1) mem[reg.PSP] += 2 return mem[NEXT] end) DECR2 = defPrim("2-", () -> begin ensurePSDepth(1) mem[reg.PSP] -= 2 return mem[NEXT] end) ADD = defPrim("+", () -> begin b = popPS() a = popPS() pushPS(a+b) return mem[NEXT] end) SUB = defPrim("-", () -> begin b = popPS() a = popPS() pushPS(a-b) return mem[NEXT] end) MUL = defPrim("*", () -> begin b = popPS() a = popPS() pushPS(a*b) return mem[NEXT] end) DIVMOD = defPrim("/MOD", () -> begin b = popPS() a = popPS() q,r = divrem(a,b) pushPS(r) pushPS(q) return mem[NEXT] end) EQU = defPrim("=", () -> begin b = popPS() a = popPS() pushPS(a==b ? -1 : 0) return mem[NEXT] end) NEQU = defPrim("<>", () -> begin b = popPS() a = popPS() pushPS(a!=b ? -1 : 0) return mem[NEXT] end) LT = defPrim("<", () -> begin b = popPS() a = popPS() pushPS(a", () -> begin b = popPS() a = popPS() pushPS(a>b ? -1 : 0) return mem[NEXT] end) LE = defPrim("<=", () -> begin b = popPS() a = popPS() pushPS(a<=b ? -1 : 0) return mem[NEXT] end) GE = defPrim(">=", () -> begin b = popPS() a = popPS() pushPS(a>=b ? -1 : 0) return mem[NEXT] end) ZEQU = defPrim("0=", () -> begin pushPS(popPS() == 0 ? -1 : 0) return mem[NEXT] end) ZNEQU = defPrim("0<>", () -> begin pushPS(popPS() != 0 ? -1 : 0) return mem[NEXT] end) ZLT = defPrim("0<", () -> begin pushPS(popPS() < 0 ? -1 : 0) return mem[NEXT] end) ZGT = defPrim("0>", () -> begin pushPS(popPS() > 0 ? -1 : 0) return mem[NEXT] end) ZLE = defPrim("0<=", () -> begin pushPS(popPS() <= 0 ? -1 : 0) return mem[NEXT] end) ZGE = defPrim("0>=", () -> begin pushPS(popPS() >= 0 ? -1 : 0) return mem[NEXT] end) AND = defPrim("AND", () -> begin b = popPS() a = popPS() pushPS(a & b) return mem[NEXT] end) OR = defPrim("OR", () -> begin b = popPS() a = popPS() pushPS(a | b) return mem[NEXT] end) XOR = defPrim("XOR", () -> begin b = popPS() a = popPS() pushPS(a $ b) return mem[NEXT] end) INVERT = defPrim("INVERT", () -> begin pushPS(~popPS()) return mem[NEXT] end) # Literals LIT = defPrim("LIT", () -> begin pushPS(mem[reg.IP]) reg.IP += 1 return mem[NEXT] end) # Memory primitives STORE = defPrim("!", () -> begin addr = popPS() dat = popPS() mem[addr] = dat return mem[NEXT] end) FETCH = defPrim("@", () -> begin addr = popPS() pushPS(mem[addr]) return mem[NEXT] end) ADDSTORE = defPrim("+!", () -> begin addr = popPS() toAdd = popPS() mem[addr] += toAdd return mem[NEXT] end) SUBSTORE = defPrim("-!", () -> begin addr = popPS() toSub = popPS() mem[addr] -= toSub return mem[NEXT] end) # Built-in variables defExistingVar("HERE", HERE) defExistingVar("LATEST", LATEST) defExistingVar("PSP0", PSP0) defExistingVar("RSP0", RSP0) STATE = defNewVar("STATE", 0) BASE = defNewVar("BASE", 10) # Constants defConst("VERSION", 1) defConst("DOCOL", DOCOL) defConst("DICT", DICT) F_IMMED = defConst("F_IMMED", 128) F_HIDDEN = defConst("F_HIDDEN", 256) F_LENMASK = defConst("F_LENMASK", 127) # Return Stack TOR = defPrim(">R", () -> begin pushRS(popPS()) return mem[NEXT] end) FROMR = defPrim("R>", () -> begin pushPS(popRS()) return mem[NEXT] end) RSPFETCH = defPrim("RSP@", () -> begin pushPS(reg.RSP) return mem[NEXT] end) RSPSTORE = defPrim("RSP!", () -> begin RSP = popPS() return mem[NEXT] end) RDROP = defPrim("RDROP", () -> begin popRS() return mem[NEXT] end) # Parameter Stack PSPFETCH = defPrim("PSP@", () -> begin pushPS(reg.PSP) return mem[NEXT] end) PSPSTORE = defPrim("PSP!", () -> begin PSP = popPS() return mem[NEXT] end) # I/O defConst("TIB", TIB) NUMTIB = defNewVar("#TIB", 0) TOIN = defNewVar(">IN", 0) KEY = defPrim("KEY", () -> begin if mem[TOIN] >= mem[NUMTIB] mem[TOIN] = 0 line = readline() mem[NUMTIB] = length(line) mem[TIB:(TIB+mem[NUMTIB]-1)] = [Int64(c) for c in collect(line)] end pushPS(mem[TIB + mem[TOIN]]) mem[TOIN] += 1 return mem[NEXT] end) EMIT = defPrim("EMIT", () -> begin print(Char(popPS())) return mem[NEXT] end) WORD = defPrim("WORD", () -> begin c = -1 skip_to_end = false while true callPrim(mem[KEY]) c = Char(popPS()) if c == '\\' skip_to_end = true continue end if skip_to_end if c == '\n' skip_to_end = false end continue end if c == ' ' || c == '\t' continue end break end wordAddr = mem[HERE] offset = 0 while true mem[wordAddr + offset] = Int64(c) offset += 1 callPrim(mem[KEY]) c = Char(popPS()) if c == ' ' || c == '\t' || c == '\n' break end end wordLen = offset pushPS(wordAddr) pushPS(wordLen) return mem[NEXT] end) NUMBER = defPrim("NUMBER", () -> begin wordLen = popPS() wordAddr = popPS() s = ASCIIString([Char(c) for c in mem[wordAddr:(wordAddr+wordLen-1)]]) try pushPS(parse(Int64, s, mem[BASE])) pushPS(0) catch pushPS(1) # Error indication end return mem[NEXT] end) # Dictionary searches FIND = defPrim("FIND", () -> begin wordLen = popPS() wordAddr = popPS() word = ASCIIString([Char(c) for c in mem[wordAddr:(wordAddr+wordLen-1)]]) latest = mem[LATEST] while latest>0 lenAndFlags = mem[latest+1] len = lenAndFlags & F_LENMASK hidden = (lenAndFlags & F_HIDDEN) == F_HIDDEN if hidden || len != wordLen latest = mem[latest] continue end thisAddr = latest+2 thisWord = ASCIIString([Char(c) for c in mem[thisAddr:(thisAddr+len-1)]]) if thisWord == word break end end pushPS(latest) return mem[NEXT] end) TOCFA = defPrim(">CFA", () -> begin addr = popPS() lenAndFlags = mem[addr+1] len = lenAndFlags & F_LENMASK pushPS(addr + 2 + len) return mem[NEXT] end) TODFA = defWord(">DFA", [TOCFA, INCR, EXIT]) # Compilation CREATE = defPrim("CREATE", () -> begin wordLen = popPS() wordAddr = popPS() word = ASCIIString([Char(c) for c in mem[wordAddr:(wordAddr+wordLen-1)]]) mem[mem[HERE]] = mem[LATEST]; mem[HERE] += 1 mem[LATEST] = mem[HERE] mem[mem[HERE]] = wordLen; mem[HERE] += 1 mem[mem[HERE]:(mem[HERE]+wordLen-1)] = collect(Int64, word) mem[HERE] += wordLen return mem[NEXT] end) COMMA = defPrim(",", () -> begin mem[mem[HERE]] = popPS() mem[HERE] += 1 return mem[NEXT] end) LBRAC = defPrim("[", () -> begin mem[STATE] = 0 return mem[NEXT] end, flags=F_IMMEDIATE) RBRAC = defPrim("]", () -> begin mem[STATE] = 1 return mem[NEXT] end, flags=F_IMMEDIATE) HIDDEN = defPrim("HIDDEN", () -> begin addr = popPS() + 1 mem[addr] = mem[addr] $ F_HIDDEN reurn mem[NEXT] end) HIDE = defWord("HIDE", [WORD, FIND, HIDDEN, EXIT]) COLON = defWord(":", [WORD, CREATE, LIT, DOCOL, COMMA, LATEST, FETCH, HIDDEN, RBRAC, EXIT]) SEMICOLON = defWord(";", [LIT, EXIT, COMMA, LATEST, FETCH, HIDDEN, LBRAC, EXIT], flags=F_IMMEDIATE) IMMEDIATE = defPrim("IMMEDIATE", () -> begin lenAndFlagsAddr = mem[LATEST] + 1 mem[lenAndFlagsAddr] = mem[lenAndFlagsAddr] $ F_IMMEDIATE return mem[NEXT] end, flags=F_IMMEDIATE) #### VM loop #### function runVM() jmp = NEXT while (jmp = callPrim(jmp)) != 0 end end # Debugging tools function dump(startAddr::Int64; count::Int64 = 100, cellsPerLine::Int64 = 10) chars = Array{Char,1}(cellsPerLine) for i in 0:(count-1) addr = startAddr + i if i%cellsPerLine == 0 print("$addr:") end print("\t$(mem[addr]) ") if (mem[addr]>=32 && mem[addr]<176) chars[i%cellsPerLine + 1] = Char(mem[addr]) else chars[i%cellsPerLine + 1] = '.' end if i%cellsPerLine == cellsPerLine-1 println(string("\t", ASCIIString(chars))) end end end function printPS() count = reg.PSP - mem[PSP0] if count > 0 print("<$count>") for i in (mem[PSP0]+1):reg.PSP print(" $(mem[i])") end println() else println("Parameter stack empty") end end function printRS() count = reg.RSP - mem[RSP0] if count > 0 print("<$count>") for i in (mem[RSP0]+1):reg.RSP print(" $(mem[i])") end println() else println("Return stack empty") end end end